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Microcrystalline calcite (micrite) dominates the sedimentary record of the aftermath of the Cretaceous–
Paleogene (K–Pg) impact at 31 sites globally, with records ranging from the deep ocean to the Chicxulub 
impact crater, over intervals ranging from a few centimeters to more than seventeen meters. This micrite-
rich layer provides important information about the chemistry and biology of the oceans after the impact. 
Detailed high-resolution scanning electron microscopy demonstrates that the layer contains abundant 
calcite crystals in the micron size range with a variety of forms. Crystals are often constructed of delicate, 
oriented agglomerates of sub-micrometer mesocrystals indicative of rapid precipitation. We compare 
the form of crystals with natural and experimental calcite to shed light on their origin. Close to the 
crater, a significant part of the micrite may derive from the initial backreaction of CaO vaporized during 
impact. In more distal sites, simple interlocking rhombohedral crystals resemble calcite precipitated from 
solution. Globally, we found unique calcite crystals associated with fossilized extracellular materials that 
strikingly resemble calcite precipitated by various types of bacteria in natural and laboratory settings. 
The micrite-rich layer contains abundant bacterial and eukaryotic algal biomarkers and most likely 
represents global microbial blooms initiated within millennia of the K–Pg mass extinction. Cyanobacteria 
and non-haptophyte microalgae likely proliferated as dominant primary producers in cold immediate 
post-impact environments. As surface-water saturation state rose over the following millennia due to the 
loss of eukaryotic carbonate producers and continuing river input of alkalinity, “whitings” induced by 
cyanobacteria replaced calcareous nannoplankton as major carbonate producers. We postulate that the 
blooms grew in supersaturated surface waters as evidenced by crystals that resemble calcite precipitates 
from solution. The microbial biomass may have served as a food source enabling survival of a portion of 
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the marine biota, ultimately including life on the deep seafloor. Although the dominance of cyanobacterial 
and algal photosynthesis would have weakened the biological pump, it still would have removed 
sufficient nutrients from surface waters thus conditioning the ocean for the recovery of biota at higher 
trophic levels.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The mass extinction at the Cretaceous-Paleogene (K–Pg) bound-
ary (66.0 Ma) eliminated ∼75% of marine and ∼50% of terrestrial 
species (Sepkoski, 1996). In the ocean, the extinction was highly 
selective with near-surface organisms more susceptible to extinc-
tion than deep-water dwellers (e.g., Jablonski, 1986), and calcifying 
organisms more susceptible than those with siliceous or organic 
tests (e.g., Thierstein, 1982). The resulting disruption of food webs 
paved the way for rapid diversification of new life in the Paleocene 
oceans (e.g., Alroy, 2008; Hull et al., 2011).

The dominant group of Cretaceous phytoplankton, the calcare-
ous nannoplankton, suffered extinction of 88% of genera and 93% 
of species at the K-Pg boundary (Bown et al., 2004). The extinction 
was abrupt and striking (e.g., Bown, 2005) and a diverse group of 
some 131 species, many of which had been successful for millions 
of years, were replaced within a few thousand years by a hand-
ful of taxa including a series of ephemeral but dominant species, 
the so-called “boom-bust” taxa (Jones et al., 2019). The sharp taxo-
nomic turnover involved a radical change in the degree of calcifica-
tion and cell size from more heavily-calcified and larger-celled Cre-
taceous species to the less heavily calcified “boom-bust” taxa with 
smaller cell sizes (Alvarez et al., 2019). Among the phytoplankton, 
nannoplankton never regained their dominance and were replaced 
by diatoms and dinoflagellates, especially in eutrophic, high lat-
itude and coastal settings (Katz et al., 2004; Knoll and Follows, 
2016). Biogeochemical cycles were radically transformed at the 
K-Pg boundary as a result of these evolutionary shifts, involving 
change in carbonate saturation and accumulation rates, and or-
ganic carbon export and burial (e.g., Zachos and Arthur, 1986; 
Kump, 1991; D’Hondt, 2005; Henehan et al., 2016; Alvarez et al., 
2019; Sepulveda et al., 2019). However, questions remain about the 
rate and magnitude of these changes, and exactly how they relate 
to the biotic recovery in the surface and deep ocean. Model sim-
ulations suggest that the extinction of calcareous nannoplankton 
would lead to an increase in saturation over thousands of years 
in a so-called saturation “overshoot”, possibly resulting in a brief 
interval of supersaturation (Alegret and Thomas, 2013; Henehan 
et al., 2016). Recent B isotope measurements support these sim-
ulations showing a brief interval of increased saturation following 
a short interval of acidification (Henehan et al., 2019). Moreover, 
sediments in lowermost Paleocene sections from numerous sites 
are rich in microcrystalline calcite, known as micrite (Thierstein et 
al., 1991; Bralower et al., 2002; Minoletti et al., 2005), which has 
been proposed to result from abiotic calcite precipitation (Bralower 
et al., 2002). However, the extent of micritic sediments is not 
known and cause of deposition is not fully established.

Numerous independent lines of evidence support the impact 
at Chicxulub as the main trigger of the mass extinction and re-
lated changes in biogeochemical cycles (Hildebrand et al., 1991; 
Schulte et al., 2010; Hull et al., 2020). These changes occurred 
so rapidly that they are recorded in a few centimeters of section 
at most localities worldwide (D’Hondt et al., 1994; Kring, 2007), 
typically making it difficult to reconstruct events shortly after the 
impact. Coring of the peak ring of the Chicxulub crater [Interna-
tional Ocean Discovery Program (IODP) and International Continen-
tal Drilling Program (ICDP) Expedition 364, Site M0077] recovered 
a highly expanded record of the immediate aftermath of the im-
pact (Morgan et al., 2016), allowing exploration of the earliest re-
covery in unprecedented detail. The section at Site M0077 includes 
130 m of impact melt rock and melt-bearing impact breccia (“sue-
vite”). Most suevite was deposited in a flooded crater following 
ocean resurge, and the shallowest suevite record tsunami (Gulick 
et al., 2019). The ‘transitional unit’, a 75 cm interval of micritic 
limestone directly overlying the suevite, consists of sediment that 
settled from turbid waters, and recorded the return of life to the 
sterilized crater in the days and years after the impact, along with 
changes in ocean chemistry (Lowery et al., 2018; Schaefer et al., 
2020).

Here, we report the discovery that the micrite-rich layer found 
in the crater is actually a global feature of the K-Pg boundary af-
termath, based on observations at 30 other sites across the world’s 
oceans, and show that it contains fragile crystals with an array of 
morphologies. Based on comparison with the morphology of nat-
ural and experimental materials, we propose that the micrite has 
several origins including precipitation from supersaturated seawa-
ter, initially via carbonation of impact-generated CaO and later by 
a survivor microbial community thriving in the millennia after of 
the mass extinction. We propose that long term supersaturation 
was caused by a sharply lowered CaCO3/organic carbon rain ra-
tio resulting from the pelagic calcifier extinction, and continued 
river alkalinity delivery that gradually led to surface seawater cal-
cite saturation states sufficient to allow “whitings”, consistent with 
model results (Henehan et al., 2016). We postulate that this micro-
bial community was uniquely adapted to thrive under the effects 
of the Chicxulub impact, provided food for survivors at higher lev-
els in the food chain in its aftermath, and helped condition ocean 
environments for the recovery of decimated groups. In the crater, 
the microbial community was part of a diverse group of primi-
tive life adapted to post-impact environmental upheaval (Schaefer 
et al., 2020).

2. Materials and methods

Materials: This study is based on observations of a total of 818 
bulk sediment samples from 31 sites where the K-Pg boundary is 
preserved, ranging from proximal locations in the Gulf of Mexico 
(including within the Chicxulub crater), through a range of shelf to 
abyssal depths in all ocean basins (Fig. 1; Table 1). K-Pg boundary 
units were deposited via ejecta, high-energy tsunami and seiche 
waves, and gravity flows at proximal Gulf of Mexico and crater 
sites and by pelagic sedimentation at sites in other ocean basins, 
and have highly variable lithology, CaCO3 content, and color. Sec-
tions were studied at centimeter to decimeter resolution. More 
information on sites is provided in Supplemental Materials Sec-
tion 3.

Light Microscopy: Smear slides were prepared of all bulk sediment 
samples using routine techniques and observed in a Zeiss Axio Im-
ager A2 photomicroscope at a magnification of 1600x. Observations 
focused on micrite and nannofossils (including calcispheres). Frag-
ments of foraminifera and occasional whole juvenile foraminifera 
were also observed.

Scanning Electron Microscopy: Micrite and associated particles were 
observed in a FEI Nova NanoSEM 630 Field-Emission SEM (FE-SEM) 
at the Materials Characterization Laboratory at Pennsylvania State 
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Fig. 1. Occurrences (red crosses) of the global micrite-rich layer at the K-Pg boundary. Blue circle indicates location of the Chicxulub impact crater. Columns show thickness 
of micrite-rich layer at 31 sites with interval over 5 m not shown (Bel, Braz)). + indicates minimum thickness in sections where uppermost samples collected are still within 
layer. Colors of columns refer to nature of micrite: largely dispersed refers to intervals dominated by single micrite grains; spheres to intervals dominated by translucent 
spheres, shelled scalenohedra; and mixed to both. Occurrences of different micrite structures indicated by symbols, as are K-Pg boundary markers (Ir, charcoal and tektites). 
Symbols beneath condensed columns occur within the post boundary section (not below). Numbers refer to DSDP/ODP/IODP Sites. Bel-Beloc, Haiti; Braz-Brazos, Texas; 
LaJ-Lajilla, Mexico; Gor-Gorgonilla, Colombia; CB-Campos Basin, South Atlantic; Kef, El Kef, Tunisia; Yax, Yaxcopoil borehole, Chicxulub crater; Kli-Stevns Klint, Denmark.
University (PSU). To observe the fine fraction, bulk sediment sam-
ples were disaggregated in water. A few drops of the solution were 
placed on a corner of a coverslip and slowly dried on a hotplate. 
The piece of coverslip was adhered to an SEM stub using carbon 
tabs. Samples were coated with Ir and viewed in the SEM using 
immersion imaging mode, typically with a working distance about 
3.2 mm, accelerating voltage of 7 kV and spot size of 2.8 nm. 
Energy Dispersive Spectroscopy was used to identify unknown par-
ticles based on their elemental composition. These analyses were 
performed routinely at first in all samples until a clear relationship 
between morphology and chemical composition was established. 
The sizes of particles were determined manually using ImageJ soft-
ware.

Transmission Electron Microscopy: Ultrathin sections of Sample 
738C-20R-5, 97 cm were prepared for TEM study using a standard 
microbiology protocol in order to preserve potential microbial or 
organic structures. The bulk sediment sample was fixed with glu-
taraldehyde and post-fixed with osmium tetroxide in HEPES buffer, 
then dehydrated with ethanol and propylene oxide and embedded 
in an Epoxy resin (Epoxy embedding medium kit, Sigma-Aldrich 
Co.). Ultrathin sections (∼70 nm) were obtained using diamond 
knife ultramicrotomy. TEM analyses were performed using a Talos 
F200X at PSU equipped with a field emission gun and operating 
at 200 kV. Scanning transmission electron microscopy (STEM) ob-
servations were performed in the high angle annular dark field 
mode. Chemical maps were obtained using Energy Dispersive X-
ray Spectroscopy (EDXS) with a Super-X system consisting of 4 
SDDs (Silicon Drift Detectors). A sample from Site 1262 (1262B-
22H-4, 134 cm) was disaggregated and dried on a copper grid for 
TEM study.

Observations of foraminifera: Foraminifera were generally rare in 
samples compared to the fine fraction. To observe foraminifera 
and other larger particles in the SEM, samples were centrifuged 
to remove clay, coccoliths, and fine micrite. The coarser fraction 
was placed on a double-sided carbon tab on the SEM stub using a 
pipette. Samples were also sieved to isolate the foraminiferal frac-
tion. To prepare samples for washing, they were broken down into 
pea-sized pieces, placed in a mixture of water and hydrogen per-
oxide on a shaker table overnight. Samples were washed through 
a 38 μm sieve and oven dried at 40 ◦C.

Stable Isotopes: CaCO3 analyses were carried out on bulk sedi-
ment samples in a UIV Inc. Coulometrics Coulometer at PSU (Site 
M0077) and at the University of California, Santa Cruz (UCSC) for 
all other sites, with a precision of 0.05%. Stable isotope analysis of 
bulk CaCO3 was carried out on a Kiel/MAT253 at UCSC. Analytical 
precision was better than ±0.05� for δ13C. All values are reported 
relative to vPDB.

Trace Element Analysis: 400 μg of bulk sediment sample material 
was homogenized with mortar and pestle, dissolved in 500 μL of 
optima-grade 0.075 N HNO3, and mixed with a vortex mixer. To 
remove the non-carbonate fraction of the bulk sediments, sam-
ples were then centrifuged at 5000 rpm for 10 minutes, and the 
supernatant fluid was transferred to 1N HNO3-washed (i.e., boron-
cleaned) polypropylene vials. Dissolved samples were analyzed for 
trace, minor, and major elements via inductively-coupled mass 
spectrometry (ICP-MS) with a Thermo Element XR at UCSC, fol-
lowing the analytical methodology of Brown et al. (2011). Inter-run 
precision was monitored using consistency standards, and was <7% 
(2sd) for B/Ca during sample runs. [B] is then calculated under the 
assumption that calcite is the only material supplying boron and 
calcium to the dissolved sample.

X-Ray diffraction: Powder X-ray diffraction was used to identify 
the mineral phases in the collected core samples. Bulk sediment 
samples were air-dried and ground in an agate mortar using an 
agate pestle. The powder was then mounted on a zero-background 
quartz plate, and XRD data were collected with a PANalytical 
X’Pert Pro MPD at PSU at 45 kV and 40 mA using a Cu target 
(λ = 5.1418 Å) and a solid-state hybrid pixel detector. Powdered 
samples were scanned from 5◦ to 70◦ 2-theta at 2 deg/min. The 
incident beam passed through a 1/4◦ divergence slit, a 1/2◦ anti-
scatter slit, and 0.04 rad Soller slits. The diffracted beam passed 
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Table 1
Definition and thickness of the micrite layer at the study sites. + indicates minimum thickness. Mic/sphere is relative abundance of dispersed micrite and transulcent 
spheroids.

Site Hole Location Base mbsf Top mbsf Thickness # Slides mic/sphere

M0077 A Chicxulub Crater 40R-1, 108 617.32 40R-1, 34 616.58 0.74 95 mostly micrite
95 Yucatan Outer Basin 13R-3, 36 398.36 13R-1, 113 396.13 2.23+ 23 mostly micrite
208 Lord Howe Rise 33R-1, 63 576.63 33R-1, 33 576.33 0.3 33 mostly micrite
356 Sao Paulo Plateau 29R-3, 33 411.83 29R-3, 28 411.78 0.05 27 all spheres
384 J-Anomaly Ridge 13R-3, 32 167.92 13R-3, 0 167.6 0.32 30 mixture
465A Hess Rise 3R-3, 115 62.15 3R-3, 90 61 0.25 14 mostly spheres
528 Walvis Ridge 31R-CC 407.27 31R-6. 80 405.8 1.47+ 9 mixture
536 Campech Escarpment 9R-5, 145 77.95 9R-5, 28 76.78 1.17 21 mixture
690 C Maud Rise 15X-4, 39 247.79 15X-4, 16 247.56 0.23 39 mixture
738 C Kerguelen Plateau 20R-5, 102 377.22 20R-5, 40 376.6 0.62 57 mixture
752 B Broken Ridge 11R-3, 93 358.73 11R-3, 13 357.93 0.8 38 mixture
761 C Exmouth Plateau 3R-3, 75 172.47 3R-3, 55 172.27 0.2 39 mixture
999 B Colombia Basin 60R-1, 50 1050.6 59R-2, 118 1048.18 2.42 12 mixture
1001 A Nicaragua Rise 38R-CC, 21 352.25 38R-CC, 4 352.08 0.17+ 4 mixture
1049 A Blake Nose 17X-2, 19 125.49 17X-2, 49 125.79 0.3 9 mixture
1124 C Rehoku Drift 48X-CC, 9* 463.28 48X-CC, 3 463.22 0.06+ 14 mixture
1138 A Kerguelen Plateau 52R-3, 129 490.99 52R-2, 120 489.4 1.59 36 mixture
1209 A Shatsky Rise 25H-6, 109 235.29 25H-6, 103 235.23 0.06 12 mostly spheres
1210 A Shatsky Rise 24H-4, 45 219.85 24H-4, 38 219.78 0.07 10 mostly spheres
1259 B Demerera Rise 13R-1, 49 445.19 13R-1, 26 444.96 0.23 45 mixture
1260 A Demerera Rise 36R-4, 94 332.14 36R-4, 55 331.75 0.39 43 mostly spheres
1262 B Walvs Ridge 22H-4, 137 195.53 22H-4, 0 194.16 1.37 59 mixture
1267 B Walvs Ridge 32X-4, 84 286.34 32X-3, 52 284.52 1.82 25 mixture
TN, Campos Basin 166 39 1.27 30 mixture
Lajilla, Mexico 0-2 +195-200 2.00+ 15 mostly micrite
Brazos, Texas Hansen -15.18 -9.98 5.2 23 mostly spheres
El Kef, Tunisia A 16-1, 110 20.08 16-1, 34 19.32 0.76 14 mostly spheres
Stevns Klint, Denmark 2-1 0 6-2t 0.24 0.24+ 12 mixture
Beloc, Haiti 0 17.95 17.95+ 15 mostly micrite
Gorgonilla Island G-18, 88 18.88 G-20, 73 20.73 1.85 8 both micrite and spheres
YAX Core, Chicxulub 1272 793.94 1270 793.35 0.59 7 mostly micrite
through a 1/4◦ receiving slit, 0.04 rad Soller slits, and a Ni filter. 
Phase identification and phase abundance from all XRD patterns 
were performed using Jade 2010 Analysis software by MDI of Liv-
ermore, CA. Results are shown in Supplemental Materials Table 1.

Biomarker analyses: Total lipid extracts were obtained via Acceler-
ated Solvent Extraction of approximately 12.5 g of bulk sediment 
and dried to <1 mL under a stream of N2. Lipid extracts were sep-
arated into fractions (aliphatics, aromatics, and polars) via Acceler-
ated Solvent Extraction as per Magill et al. (2015). Mobile phases 
of 100% hexane, 85% hexane /15% methylene chloride, and 70% 
methylene chloride / 30% methanol (volume: volume) were used 
to separate the aliphatic, aromatic, and polar fractions respectively. 
Lipid fractions were brought to near dryness under a stream of N2. 
Aliphatic fractions were analyzed via GC-MS on a Thermo Scien-
tific Trace 1310 Gas Chromatograph coupled to a Thermo Scientific 
ISQ LT single quadrupole Mass Spectrometer at PSU via 1/10 man-
ual injections. A Restek Rtx-1 fused silica column (60 m length x 
0.25 mm ID x 0.25 μm df) was used with a helium carrier gas. The 
oven program started with an injection temperature of 40 ◦C held 
for 1.5 minutes, followed by a rise of 15.0 ◦C/min until temperature 
reached 140 ◦C, after which temperature increased 2.0 ◦C/min un-
til temperature reached 320 ◦C, from which time the temperature 
was held for 20 minutes. 100% of flow was transferred to the ISQ 
quadrupole mass spectrometer, transfer line temperature 320 ◦C, 
and electron ionization 230 ◦C, which scanned for four scan filters: 
(1) a mass range of 43-800 Daltons at 5 scans/s, (2) selected ion 
monitoring of mass 191 amu at 5 scans/s, (3) selected ion moni-
toring of mass 217 at 5 scans/s, and (4) selected ion monitoring of 
mass 218 at 5 scans/s. Biomarker quantifications were determined 
from MS peak area, using AGSO standard oil, Macondo oil, and an 
n-C10 to n-C40 alkane standard and response curve. Mass spectra 
were used for compound identification by comparison with stan-
dards and published spectra.
Age control of sites: The study sites have a variety of published 
stratigraphic controls: planktic foraminifera and calcareous nanno-
fossil biostratigraphy, orbital stratigraphy and magnetostratigraphy. 
In the immediate boundary interval, several sites have measured 
Ir anomalies (465A, 690, 738, 752, 761, Beloc, Brazos, Fish Clay, El 
Kef, Lajilla). Biostratigraphic age control was obtained over many 
years of investigation and is of variable quality. Nannofossil assem-
blages show distinct hemispheric disparities with Danian species 
appearing earlier at Northern Hemisphere sites (Jiang et al., 2010) 
and a sequence of “boom-bust” taxa showing significant diachrone-
ity (Jones et al., 2019). Planktic foraminifera generally recovered 
faster than calcareous nannoplankton (Hull et al., 2011; Lowery et 
al., 2018) and show a more consistent sequence of markers that 
can be applied for biostratigraphy. The earliest Danian P0 Zone, 
however, is typically missing at open ocean sites, hindering global 
correlation. Moreover, distinctly different assemblages are observed 
at high-latitude sites (Huber, 1991), complicating the correlation 
with lower-latitude locations.

Because of the difficulties with traditional microfossil bios-
tratigraphies, the most accurate correlation in the K-Pg inter-
val involves magnetostratigraphy and orbital stratigraphy. Magne-
tostratigraphy does not provide good resolution as the boundary 
lies within Chron 29r and the Chron 29r/Chron29n boundary lies 
368 kyr above it (Westerhold et al., 2008). Thus orbital stratigraphy 
provides the most accurate time control and is used here to obtain 
age estimates for the duration of the micrite-rich bed. Unfortu-
nately, orbital age control is only available at more recently drilled 
sites, including Sites 1001 (Röhl et al., 2001), 1209, 1210, 1262 and 
1267 (Westerhold et al., 2008). Our estimates for the range of the 
duration of the micrite-rich bed are based on Sites 1210 and 1262 
with sample ages shown in Westerhold et al. (2008) and Jones et 
al. (2019).
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Fig. 2. Morphology of micrite structures (Pl. 1-9) compared to calcite produced by modern bacterial species from natural environment (Pl. 10) and in culture (Pl. 11, 12). Pl. 1. 
Modified scalenohedral microcrystals showing mesocrystals; Pl. 2. Rhombohedral microcrystals showing mesocrystals, arrows show porous faces; Pl. 3. Complex rhombohedral 
microcrystals showing mesocrystals; Pl. 4, 5. Scalenoclusters showing mesocrystals; Pl. 6. Modified scalenohedral microcrystals showing mesocrystals and flat crystal faces; Pl. 
7, 8. Capsular rhombohedra, internal crystals shown with arrows; Pl. 9. Possible capsular rhombohedra; Pl. 10. Rhombohedral mesocrystals produced by modern stromatolite 
cyanobacteria after Pacton et al. (2015) (arrow shows porous faces (compare to structure in Pl. 2); Pl. 11, 12. Scalenoclusters produced by Streptomyces luteogriseus in culture 
after Cao et al. (2016) (arrow in Pl. 12 shows flat and porous faces). Striking modern-ancient morphology resemblance shown in small plates that identify key features: 
porous plates–Pl. 2a compare with Pl. 10a; scalenocluster—Pl. 4a compare with Pl. 11a; smooth and mesocrystal faces—Pl. 6a compare with Pl. 12a. Pl. 1. Sample 1262B-22-4, 
134 cm; Pl. 2. Sample 1210A-24H-4, 40 cm; Pl. 3. Sample 761C-3R-3, 67 cm; Pl. 4. Sample 1259B-13R-1, 30 cm; Pl. 5. Sample 1262B-22-4, 30 cm; Pl. 6. Sample 690C-15X-3, 
22 cm; Pl. 7, 8. Sample 465A-3R-3, 105 cm; Pl. 9. Sample 1210A-24H-4, 38 cm; Pl. 10-12 reproduced with Creative Commons CC-BY licenses. Scale bar represents 500 nm.
3. Results

Smear slide observations suggest that microcrystalline calcite 
(also known as micrite) is the dominant carbonate component di-
rectly above the K–Pg boundary at all 31 sites. The thickness of the 
micrite-rich carbonate layer ranges from 0.06 to over 17.95 me-
ters (Fig. 1; Table 1), and generally is greater in sections closer 
to the impact, possibly due to redeposition by high-energy pro-
cesses including gravity flows and tsunami (e.g., Bralower et al., 
1998). Its basal part in more expanded sections contains rare 
(< 5%) surviving and reworked Cretaceous calcareous nannofossils 
with rare fragments and whole specimens of planktic foraminifera. 
Planktic foraminiferal abundance increases upwards and calcare-
ous dinoflagellates (calcispheres), dominated by the disaster taxon 
Cervisiella, gradually appears in the middle of the layer. They are 
joined by the common, largely disarticulated disaster nannoplank-
ton taxa Braarudosphaera and Biantholithus at South Atlantic and 
some Gulf of Mexico sites. The top of the layer is difficult to 
define, because the abundance of micrite gradually declines up-
ward, and incoming Danian nannofossils, including the dominant 
so-called “boom bust” species (Bown, 2005; Jones et al., 2019), 
Braarudosphaera, calcispheres, and foraminifers gradually increase 
in abundance. Thus the layer thickness is somewhat arbitrary (Sup-
plemental Materials Section 3), especially at sites where subsidiary 
Braarudosphaera, Biantholithus and abundant calcispheres supply 
dispersed micrite. The layer contains variable amounts of clay, en-
compassing the traditional K-Pg “boundary clay” in condensed sec-
tions, and lithic material at proximal sites.

Field emission-scanning electron microscopy (FE-SEM) shows 
that well-preserved crystals range from sub-micrometer to 5 μm 
in size, with a variety of crystal forms including rhombohedra, 
modified scalenohedra and complex geometries that are difficult to 
characterize (Figs. 2, 3; Supplemental Materials Figures 1, 2). These 
micron-sized crystals, termed microcrystals here, are commonly 
composed of highly regular, rhombohedral subcrystals ∼5–20 nm 
in size (e.g., Fig. 2; Pl. 1-3; Supplemental Materials Figure 1; 
Pl. 1-6), and are commonly referred to as mesocrystals (e.g., Colfen 
and Antonietti, 2005). Well-preserved specimens are rare and gen-
erally only identifiable in the FE-SEM. Even in the FE-SEM most 
micrite is generally smooth and featureless with over 200 hours 
devoted to observing specimens. Distinct microcrystals are ob-
served at numerous sites (Fig. 1), but preservation is better at some 
(Sites 465, 1210, 1262) where we focused efforts.

Transmission electron microscope (TEM) observations (Ocean 
Drilling Program (ODP) Sites 738 and 1262) show rhombohedral 
and trapezoidal CaCO3 microcrystals less than 1 μm in size and 50 
nm mesocrystals of calcite encased in clay (Fig. 4; Pl. 1-6). X-ray 
diffraction of assorted samples from the micrite layer, including 
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Fig. 3. Morphology of micrite structures (Pl. 1-9) and biological structures (Pl. 10-12). Pl. 1, 2. Internal wall of shelled scalenohedra; Pl. 3. External wall of shelled scalenohedra 
(white arrows in Pl. 2, 3 show incompletely evolved or pitted face bearing mesocrystals; black arrows show highly developed, smooth face); Pl. 4, 5. Planktic foraminiferal 
chamber made of modified scalenohedral microcrystals (both specimens are quite overgrown; arrows show well preserved microcrystals); Pl 6. Modified scalenohedral 
microcrystal from same specimen as Pl. 4. Pl. 7. Microperforate foraminiferal wall texture showing raised areas or pustules; Pl. 8, 9. Rhombohedral microcrystals without 
mesocrystals; Pl. 10-12. EPS-like structures. Pl. 1, 2, 6. Sample 1210A-24H-4, 39 cm; Pl. 3, 4. Sample 1262B-22H-4, 134 cm; Pl. 5. Sample 690C-15-X-3, 22 cm; Pl. 7. Sample 
1049C-8X-7, 72 cm; Pl. 8, 9. Sample 1210A-24H-4, 38 cm; Pl. 10. Sample 1210A-24H-4, 37 cm; Pl. 11, 12. Sample 1210A-24H-4, 40 cm. Scale bar represents 1 μm.
that in the transitional unit at Site M0077, shows that CaCO3 in 
the layer is exclusively calcite (Supplemental Materials Table 1).

B/Ca measurements of the bulk carbonate fraction in the 
boundary interval at six sites are associated with a positive 
anomaly (Fig. 5) ranging in size from <300 (Site M0077) to >10,500 
(Site 1262) μmol/mol. Hopanes and steranes were abundant in 
samples from Sites 738 and 1262, but 2α-methyl hopanes are at 
or below detection limits (Fig. 6).

4. Discussion

4.1. A global microcrystalline calcite bed formed in the impact aftermath

Micrite above the K–Pg boundary has been described from sev-
eral deep sea sites (Thierstein et al., 1991; Bralower et al., 2002; 
Bown, 2005; Minoletti et al., 2005; MacLeod et al., 2007), but we 
are the first to suggest that it is an ocean-wide feature of the 
K–Pg boundary record. This micrite-rich carbonate layer can be 
placed in the temporal sequence of impact-related materials. At 
“ground zero,” in the Chicxulub crater (Site M0077), micrite was 
deposited in waters of ever lessening turbidity as the activity of 
seiche waves within the crater gradually subsided (Lowery et al., 
2018; Gulick et al., 2019), below the Ir anomaly (Goderis et al., 
2019). At Beloc (Haiti), Brazos (Texas), and Lajilla (Mexico), abun-
dant micrite occurs in impact spherule-bearing units, deposited 
under high-energy conditions. At some other locations globally, the 
micrite-rich layer contains charcoal and other burn markers (Sites 
M0077, 738, 1210 and 1262; Gulick et al., 2019; Lyons, 2020, in 
press; Supplemental Materials Figure 3). The occurrence of char-
coal, spherules and the Ir anomaly in the lower part of the carbon-
ate bed suggests that micrite deposition began in the immediate 
aftermath of the impact (Kring and Durda, 2002), possibly within 
days to years at proximal sites. The top of the layer is hard to de-
fine, as discussed, but deposition of micrite at some but not all 
sites extends above the base of the globally synchronous nega-
tive carbon isotope excursion that characterizes the K–Pg boundary 
(e.g., Zachos and Arthur, 1986) (Fig. 5), suggesting that the top of 
the layer is asynchronous. This asynchroneity is confirmed by or-
bital stratigraphy (Westerhold et al., 2008) which provides a range 
from 46 kyr post boundary at Site 1210 up to as late as 250 kyr at 
Site 1262 (equivalent to planktic foraminiferal Zone Pα to P1a at 
least). Regardless of its variable stratigraphical extent, the micrite-
rich carbonate layer is consistently present and therefore a global 
feature of the K–Pg boundary. In the following, we explore the 
morphology of the micrite crystals then probe the significance of 
the layer in relation to the ocean chemistry, environment and ecol-
ogy of the boundary interval.

4.2. Morphology of micrite microcrystals

The gross morphology of the micrite crystals (Minoletti et al., 
2005) has been previously described, but their size, form and tex-
ture have not been studied at high resolution which requires field 
emission scanning electron microscopy. In fact, imaging of calcite 
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Fig. 4. Transmission electron micrographs and EDXS maps. Pl. 1-3 STEM images of Sample 738C-20R-5, 91 cm showing array of forms and mesocrystals. Pl. 4-6 EDXS maps of 
views in Pl. 1-3 with Si-green, C-blue, Ca-red. Pl. 7-9. STEM images of Sample 1262B-22H-4 134 cm showing rhombohedral and trapezoidal crystals (thin strands are copper 
grid). Scale bars in individual images.
in deep-sea sediments at sub-micrometer resolution is rare, mak-
ing our observations novel, and sometimes puzzling. They reveal 
rare crystals with nm-scale structures that are surprisingly pristine 
given their age. Where well preserved, the micrite is largely com-
posed of isolated microcrystals or clusters of microcrystals which 
show a considerable degree of morphologic variation. Crystal form 
is highly variable, but we infer four distinct microcrystal arrange-
ments from well-preserved specimens (Table 2): (1) clusters of 
four to six modified scalenohedra, hereafter termed “scalenoclus-
ters” (Fig. 2; Pl. 4, 5; Supplemental Materials Figure 1; Pl. 7-12); 
(2) clusters of multiple rhombohedra or more complex geome-
tries of highly variable size and shape, termed “rhomboclusters” 
(Fig. 2; Pl. 2, 3; Fig. 3; Pl. 8, 9; Supplemental Materials Figure 
2; Pl. 5-15); (3) one to three small rhombohedra enveloped in a 
delicate, porous capsule, termed “capsular rhombohedra” (Fig. 2; 
Pl. 7-9; Supplemental Materials Figure 2; Pl. 1-4); and (4) deli-
cate shell walls made of poorly-organized modified scalenohedra, 
termed “shelled scalenohedra” (Fig. 2; Pl. 1; Fig. 3; Pl. 1-6; Supple-
mental Materials Figure 1; Pl. 5, 6). Well-preserved microcrystals in 
all groups show highly developed, smooth faces and edges, usually 
alternating with incompletely evolved faces that display internal 
mesocrystals, giving them a pitted appearance (Fig. 2; Pl. 6; Fig. 3; 
Pl. 2, 3). Rhomboclusters include agglomerates of interlocking crys-
tals with and without mesocrystals (Fig. 3; Pl. 8, 9; Supplemental 
Materials Figure 2; Pl. 5-14). These crystals are also found as over-
growth on coccoliths (Supplementary Materials Figure 4; Pl. 4-9).

Shelled scalenohedra derive largely from small (<63 μm and of-
ten < 30 μm) planktic foraminifera (Fig. 3; Pl. 1-6; Supplemental 
Materials Figure 5; Pl. 5-12), and represent a novel wall structure 
for this group which typically has a microcrystalline, porous tex-
ture with pustules and spines (Fig. 3; Pl. 7; Supplemental Materials 
Figure 5; Pl. 1-4). A range of preservational states is observed from 
pristine (Fig. 3; Pl. 1-3) to annealed and heavily overgrown (Fig. 3; 
Pl. 4-6). Modified scalenohedral microcrystals are loosely bound 
in foraminifera as indicated by cross-polarized light microscopy 
which shows common translucent foraminiferal fragments that 
disintegrate into dispersed microcrystals (Supplemental Materials 
Section 1) and Supplemental Materials Figure 6; Pl. 1-5; Supple-
mental Materials Figure 7; Pl. 7-9). Not all translucent spheres are 
made of microcrystals, however; earliest Danian foraminifera are 
thin-walled, especially juvenile forms, and such specimens appear 
translucent in smear slides.

Overall, the fragility of microcrystals and their common over-
growth limits assignment of the majority of specimens to one of 
the four microcrystal arrangements, thus their relative contribu-
tions to each type cannot be determined. However, there appear 
to be at least qualitative differences in abundances among sites 
(Supplemental Materials Section 3). For example, at some tropical 
and shelf sites (El Kef, 465A, 1209, 1210, 1259, 1260), abundant 
translucent shell fragments, possibly pieces of shelled scalenohe-
dral foraminiferal tests, occur without significant dispersed micrite 
(Fig. 1; Table 1).

Rare occurrences of near pristine micrite preserve potential bio-
logical structures: < 50 nm wide filaments and networks of strands 
resembling extracellular organic materials observed in modern 
biofilms (Fig. 3; Pl. 10-12; Supplemental Materials Figure 8; Pl. 1-
12). These structures are generally too small to be bacterial cells, 
but in size and shape resemble extracellular structures (such as 
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Fig. 5. B/Ca values (green thick line), C-isotopes (blue thin line) and %CaCO3 content (red dashed line) from six sections crossing the K-Pg boundary. Location of paleontological 
boundary shown with arrow. Location of micrite-rich layer shown with color panels, nature of micrite as in Fig. 1.
Fig. 6. Biomarker data from Sites 738 (Kerguelen Plateau) and 1262 (Walvis Ridge). 
A. 2-methyl hopane index (2MeHI%) indicative of cyanobacteria (light blue line); B. 
Sterane/Hopane ratio (S/H) indicative of the relative contribution of bacteria (H) and 
algae (S) (green line). See text for discussion. Location of paleontological boundary 
shown with arrows. Location of micrite-rich layer shown with color panels, nature 
of micrite as in Fig. 1.

Extracellular Polymeric Substances, EPS) of bacteria or algae. Most 
filaments lie on the surfaces of crystals, but they appear to be 
exclusive to grains composed of mesocrystals, indicating that fil-
aments were original and not derived during burial or sample 
sputtering.
4.3. Origin of the global micrite-rich layer in the aftermath of the K–Pg 
mass extinction

We have shown that the K-Pg micrite-rich layer is largely mi-
crite, and where well preserved, contains an array of crystal forms 
and surface textures. Morphology is just one attribute that can 
be used to differentiate the origin of calcite crystals, in partic-
ular whether they are biological in origin (i.e. biominerals) (e.g., 
Weiner and Dove, 2003). With this understanding in mind, we at-
tempt to distinguish between the potential origins in part based 
on comparison of the morphology of microcrystals with natural 
and experimental samples, and, where applicable, based on geo-
chemical data. We acknowledge from the outset that such inter-
pretation can be difficult because biomineralization may be inti-
mately associated with inorganic precipitation in nature, and abi-
otic precipitates can mimic biological materials (e.g., Schopf et al., 
2010). Moreover, materials within the four microcrystal arrange-
ments are highly variable and may have more than one origin. We 
consider four possible origins for the micrite in the global layer: 
diagenetic reprecipitation of calcite (e.g., Fabricius, 2007), backre-
action of CaO formed by volatilization of target limestone (Yancey 
and Guillemette, 2008; Schulte et al., 2009), chemical precipitation 
from oversaturated seawater (e.g., Caldeira and Rampino, 1993; 
Henehan et al., 2016), and precipitation controlled or induced by 
cyanobacteria or non-haptophyte microalgae. An essential element 
of our interpretation is the occurrence of the mesocrystals, which 
represent rapid crystal growth via particle aggregation, also known 
as crystallization by particle attachment (CPA) (De Yoreo et al., 
2015; Gilbert et al., 2019). Mesocrystals are widely reported in 
rapidly precipitated biogenic calcite, but can also be abiotic, for ex-
ample in calcite precipitated in hot springs and numerous phases 
grown in experiments (e.g., Seto et al., 2012; Goetz et al., 2014; 
Cuif and Dauphin, 2005; Peng and Jones, 2013; Casella et al., 2018).

4.3.1. Diagenetic reprecipitation
Micrite is common in pelagic sediments, and can be formed via 

post-biogenic processes of dissolution and reprecipitation of dia-
genetic carbonate. This material forms largely via dissolution of 
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biogenic materials followed by precipitation in pore waters (e.g., 
Scholle, 1977). The process is widely considered to be geologically 
slow and typically fills pore space. Diagenetic calcite is thus gener-
ally anhedral with a smooth, featureless surface texture in the SEM 
(e.g., Pérez-Huerta et al., 2018). Below the K–Pg boundary, we ob-
serve predominantly irregularly shaped, larger micrite crystals that 
we link to diagenetic formation in the pore spaces (Supplemen-
tal Materials Figure 9; Pl. 1-3). Rhombohedral calcite crystals are 
rarely produced via diagenesis unlike dolomite. Most likely, such 
crystals are direct overgrowth on biogenic rhombohedral grains 
such as elements of coccoliths (Fabricius, 2007), which we observe 
in the carbonate layer (Supplemental Materials Figure 4; Pl. 4-9). 
Precipitation is slow and ordered, and likely via ion-by-ion addi-
tion (e.g., Colfen and Antonietti, 2005), so that mesocrystals are 
unknown in diagenetic calcite. Moreover, experimental alteration 
of biogenic materials shows that reprecipitation of biogenic calcite 
removes the mesocrystal structure (Casella et al., 2018), and fos-
sil materials altered by diagenesis are generally featureless at the 
nanometer scale (Pérez-Huerta et al., 2018). Some rhombocluster 
specimens appear smooth (Fig. 3; Pl. 8), but most show at least 
some evidence of mesocrystals (Supplemental Materials Figure 2; 
Pl. 5-15), suggesting rapid precipitation. Overgrown foraminiferal 
tests formed of modified scalenohedral microcrystals (e.g. Fig. 3; 
Pl. 4, 5; Supplemental Figure 5; Pl. 6-11) can also be distinguished 
from diagenetically overgrown foraminiferal tests, which are not 
composed of mesocrystals (Supplemental Figure 5; Pl. 1-5). We 
therefore conclude that the majority of microcrystals in the K-
Pg boundary sites are not diagenetic in origin (see Supplemental 
Materials Section 2 for more information). Some of the rhombohe-
dral crystals, especially crystal overgrowths (Supplemental Materi-
als Figure 4; Pl. 4-9), however, may have grown during the early 
stages of burial when pore spaces were relatively open and crystal 
growth was unconstrained. Moreover, we postulate that dissolution 
during organic matter oxidation may explain the lack of micrite in 
shelf locations such as El Kef.

4.3.2. Backreaction of CaO
At pressures associated with an impact, limestone dissociates 

into CaO and CO2 (Yang and Ahrens, 1998). CaO could have back-
reacted with CO2 in the vapor plume, ejecta curtain, or with am-
bient CO2 in the atmosphere or seawater, to reprecipitate CaCO3
(Agrinier et al., 2001; Cizer et al., 2012). Rounded carbonate clasts 
in K–Pg boundary deposits on the Demerara Rise (Sites 1259 and 
1260) and at Brazos are thought to have been formed via back-
reaction (Yancey and Guillemette, 2008; Schulte et al., 2009); the 
microtexture of calcite at Site M0077 (Bralower et al., in review) 
suggests that the majority of dispersed rhombohedral grains in the 
thick micrite-rich layer in proximal sites (Fig. 1) have the same ori-
gin. Because backreaction/carbonation is rapid, it is possible that it 
would form mesocrystals; indeed the somewhat irregular micro-
crystals in Site M0077 samples (Supplemental Materials Figure 1; 
Pl. 10-12) may have formed via backreaction/carbonation within 
months of the impact (Bralower et al., in review). However, the 
morphology of calcite produced experimentally by carbonation of 
Ca(OH)2 is either amorphous or well-formed scalenohedral (Cizer 
et al., 2012), thus differs from the majority of crystals described 
here.

CaO was emplaced in a fast-moving dust cloud that circled 
the globe (Artemieva and Morgan, 2020), but deposition from this 
cloud cannot explain the observed thickness of micrite at distal 
sites. The carbonate within the ejection (transient) cavity covers 
an area with a radius of ∼45 km and thickness of ∼3 km. The to-
tal volume of this carbonate is equal to 2 x 1019 cm3 if deposited 
over the surface area of the Earth (5 x 1018 cm2) giving a layer 
with an average thickness of 4 cm assuming even distribution over 
the Earth’s surface. This thickness estimate is a maximum because 
a significant amount of carbonate did not disassociate, and ends 
up as fragments within impact breccias at the impact site, as well 
as at proximal sites.

4.3.3. Abiotic precipitation from oversaturated seawater
Reaction of CaO in the oceans consumes CO2 and leads to an 

increase in calcite saturation. However, volatilization of the impact 
target may have led to short-term ocean acidification, likely from 
rainout of SO2, NOx and, to a lesser degree, from CO2 (Alegret 
et al., 2012) a prediction validated using boron isotopes (Hene-
han et al., 2019). Over longer time scales (kyr to hundreds of kyr), 
decimation of eukaryotic planktonic calcifiers with continuation 
of (possibly reduced) soft-tissue biological pumping of CO2 from 
surface waters, together with continuing riverine delivery of alka-
linity, may have increased surface ocean saturation (Boudreau et 
al., 2018), potentially to levels where calcite precipitated directly 
from seawater (Henehan et al., 2016). At face value, the B/Ca pos-
itive anomaly (Fig. 5) is indicative of an increase in pH (Yu et al., 
2007), matching interpretation of a positive B isotope excursion 
following the brief acidification interval (Henehan et al., 2019). 
However, the strong overall negative correlation between bulk car-
bonate B/Ca anomalies and CaCO3 content at Sites 690, 738, 1259, 
1262, and possibly at M0077, indicates that a large fraction of 
the high B levels is derived from clay (Ishikawa and Nakamura, 
1993) (Fig. 5; Supplemental Materials Figure 10), so that we can-
not interpret these data in terms of pH. The lower B/Ca anomaly 
(<100 μmol/mol) at Site 1210, however, shows no correlation with 
CaCO3. This anomaly corresponds to the interval of peak micrite 
content and may indicate an increase in local surface ocean pH and 
saturation (Uchikawa et al., 2015), the CaCO3 “overshoot” about 46 
kyr after the K-Pg boundary (the B isotope peak at Site 1209 is 
54 kyr after the boundary (Henehan et al., 2019)) (see Supplemen-
tal Materials Figure 11). Although the boron data do not indicate 
that the surface ocean became oversaturated to the point where 
calcite precipitated directly from seawater in the immediate af-
termath of the boundary, we cannot discount the possibility that 
the simple rhomboclusters and the moderately abundant, small (< 
1 μm) dispersed rhombohedral grains of calcite found at numer-
ous sites (Supplemental Materials Figure 7; Pl. 1-6) are abiotic in 
origin. Indeed, the agglomerates of interlocking rhombohedra, or 
rhomboclusters (Fig. 3; Pl. 8, 9; Supplemental Materials Figure 2; 
Pl. 6-15) observed at Sites 738, 1210 and 1262 resemble synthetic 
calcite (e.g., Lemarchand et al., 2004; Heberling et al., 2011), and 
the 1210 samples overlap with the peak in B/Ca. One instance of 
agglomerates growing around a piece of charcoal (Supplemental 
Materials Figure 2; Pl. 11-12; Supplemental Materials Figure 3; Pl. 
9, 10) could be interpreted as resulting from precipitation in sur-
face waters as charcoal would settle slowly allowing for crystals 
to grow. However, this and other agglomerates could represent 
a continuum of precipitation from surface waters to the top of 
the sediment column. In general, these rhomboclusters are with-
out mesocrystals, but there are exceptions (Supplemental Materials 
Figure 2; Pl. 14, 15).

4.3.4. Precipitation induced or influenced by bacteria and 
non-haptophyte algae

Today, aragonitic and calcitic mesocrystals are commonly pre-
cipitated by a range of organisms in cultures and the natural en-
vironment (Anbu et al., 2016; Han et al., 2017), with rapid growth 
via CPA commonly producing highly regular, rhombohedral sub-
crystals. In fact, this process has produced skeletal materials in a 
range of animals throughout geologic time (Gilbert et al., 2019). 
Such precipitation can be biologically mediated though three main 
processes: (1) biologically directed (or controlled) biomineraliza-
tion, in which the organisms exert a strong genetic control on 
the nucleation and growth of the minerals (generally known as 
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Table 2
Four different microcrystal forms, general crystal size, example illustration, sites observed and inferred origin.

Microcrystal 
morphology

Crystal size
(μm)

Primary figure Sites observed Inferred origin

Scalenoclusters 1-4 Fig. 2; Pl. 4, 5; 
Supplement Figure 1, 
Pl. 7-12

0077, 465, 690, 738, 
761, 1049, 1124, 1138, 
1209, 1210, 1259, 
1260, 1262, Campos 
Basin, Stevens Klint

Microbial

Rhomboclusters 0.25-3 Fig. 2; Pl. 2, 3; Fig. 3; 
Pl. 8, 9; Supplement 
Figure 2, Pl. 5-12

738, 761, 1210, 1262 Microbial/Abiotic

Capsular rhombohedra 0.25-0.5 Fig. 2; Pl. 7-9; 
Supplement Figure 2, 
Pl. 1-4

465, 1210, 1262, Stevns 
Klint,

Microbial

Shelled scalenohedra 0.5-4 Fig. 2; Pl. 1; Fig. 3; 
Pl. 1-6; Supplement 
Figure 1; Pl. 5, 6

690, 1210, 690, 1262 
(SEM) and likely more 
(LM)

Microbial/foraminiferal
biominerals); (2) indirectly induced mineralization via the modifi-
cation of the surrounding local conditions such as pH or mineral 
supersaturation states as a result of the cell’s metabolism; and 
(3) biologically influenced (or passive) precipitation of the miner-
als (commonly known as organominerals) on extracellular organic 
substances, without a high level of genetic control (Perry et al., 
2007; Dupraz et al., 2009; Benzerara et al., 2011). For example, 
precipitation of calcite or aragonite can be induced by removal 
of CO2 during photosynthesis (e.g. during whiting events (Robbins 
and Blackwelder, 1992)); and/or influenced through nucleation on 
microbial organic templates such as exopolymeric substances (EPS) 
(e.g., growth of stromatolites (Dupraz and Visscher, 2005)).

The form and microtexture of well-preserved modified scaleno-
hedral and rhombohedral microcrystals in the global carbonate 
layer, are almost completely novel in the fossil record. These mi-
crocrystals do not resemble any known form of abiotic calcite, but 
bear a striking resemblance to calcite crystals precipitated by cul-
tured and naturally occurring bacteria (Fig. 2; Pl. 10-12). The com-
mon EPS-like filaments (Fig. 3; Pl. 10-12) support a bacterial in-
terpretation. Several morphologic features are particularly diagnos-
tic: (1) four to six crystal scalenoclusters strongly resemble those 
formed by cultured cyanobacteria (Fig. 2; compare Pl. 4/4a with 
Pl. 11/11a); (2) clusters of dozens of rhombohedral and modified 
scalenohedral crystals, including those preserved in foraminiferal 
shells, contain flat, porous faces that strongly resemble the exte-
rior of mesocrystals precipitated by cyanobacteria (Fig. 2; compare 
Pl. 2/2a with Pl. 10/10a); (3) highly developed smooth faces alter-
nating with those that display mesocrystals show a striking resem-
blance to carbonates precipitated by cultured cyanobacteria (Fig. 2; 
compare Pl. 6/6a with Pl. 12/12a); and (4) delicate spherical cap-
sules containing internal microcrystals (Fig. 2; Pl. 7-9) resemble 
cyanobacteria or other bacteria encrusted with fine extracellular 
carbonate grains and filled with micron-sized, intracellular carbon-
ate (Couradeau et al., 2013). Finally, we note that the calcite crys-
tals within the micrite-rich layer often exhibit “reversed growth” 
textures. Whereas classical growth models account for the devel-
opment of apices and edges before faces (Bravais, 1866), as seen in 
skeletal crystals, the micritic calcite crystals here frequently show 
well-developed faces and poorly evolved edges (Fig. 2; Pl. 4, 6). 
These textures resemble those described in travertine (Greer et al., 
2017; Jones, 2017b), in which polycrystalline cores were succeeded 
by single-crystal faces. Greer et al. (2017) invoke a mechanism by 
which the assembly of mesocrystals is mediated by biomolecules, 
as reproduced in experiments involving chitosan. Diagnostic speci-
mens resembling cyanobacteria are found throughout the micrite-
rich layer, notably with the lowermost sample 3 cm above the 
boundary at Site 1262.

The modern cyanobacterial crystal examples illustrated (Fig. 2) 
are larger than the proposed K-Pg microbial crystals, but modern 
bacterial precipitates show significant variety in size, with calcite 
microcrystals between 2 and 5 μm in some instances (Arp et al., 
1999; Bang et al., 2001; Jones, 2017a; Jones and Renaut, 2017); the 
K-Pg specimens are within this range, although at the lower end. 
The size of microbial calcite is related to saturation state and or-
ganic content (Golubic et al., 1999; Meldrum and Hyde, 2001) and 
thus the relatively small microbial precipitates may have been a re-
sponse to the environmentally variable post K-Pg ocean. Moreover, 
from shape alone, we cannot differentiate between the possibilities 
that the microcrystals were skeletal products whose precipitation 
was directly controlled by the organism, or materials whose pre-
cipitation was induced or influenced via cells’ metabolism or re-
actions with organic matter in and around the cell. We speculate, 
however, that the forms resembling foraminifera (shelled scaleno-
hedral) were not formed through controlled biomineralization be-
cause of the difference from the typical shell structure. Regardless 
of mechanism, the microcrystal form is strong evidence for a mi-
crobial origin.

Organic biomarkers can provide additional clues as to which or-
ganisms produced these putative microbial precipitates, although 
there are no diagnostic compounds for calcifying cyanobacteria. 
The abundance of hopanes and steranes in samples from Sites 738 
and 1262 suggests that bacterial and algal production recovered 
rapidly after the impact, as proposed by Sepúlveda et al. (2009)
for Stevns Klint, Denmark. In all localities, the low abundance of 
steranes relative to hopanes (S/H, Fig. 6) suggests that bacterial 
productivity outpaced that of eukaryotic algae, or that microbial 
biodegradation was extensive (Bobrovskiy et al., 2019), or both. 
The occurrence of 2α-methyl hopanes is commonly used to sig-
nify the presence of cyanobacteria. While 2α-methyl hopanes are 
not exclusively produced by cyanobacteria, these organisms are 
typically considered the major source of 2α-methyl hopanes. The 
abundance of 2α-methyl hopanes at Stevns Klint (Sepúlveda et al., 
2009), combined with heterocyst glycolipids (albeit low in abun-
dance) in the transitional unit at Site M0077, are indicative of 
thriving cyanobacterial communities (Schaefer et al., 2020). How-
ever, 2α-methyl hopanes are at or below detection limits at Sites 
738 and 1262 (Fig. 6). This scarcity of cyanobacterial biomarkers 
may signify that cyanobacteria at open-ocean locations were either 
absent or, like contemporary taxa in these settings, did not pro-
duce 2α-methyl hopanes. Further, surface waters were likely well-
oxygenated and such conditions are not associated with preser-
vation of organic matter including 2α-methyl hopanes (Ricci et 
al., 2014). Because of these preservational issues, our investiga-
tion suggests that the morphological fossils may provide a more 
representative distribution of microbial occurrence, especially at 
pelagic sites. Thus, based on the combination of morphological and 
biomarker data, we conclude that most micrite in the carbonate 
layer at distal sites was likely produced by ocean-wide blooms of 
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cyanobacteria and algae in the millennia after the K–Pg boundary 
impact.

4.3.5. Model for the origin of the micrite-rich layer
We thus postulate a combination of sources for the micrite that 

makes up the carbonate layer including a significant fraction from 
microbes and contributions from backreaction and abiotic precipi-
tation. We propose that a unique set of conditions in the aftermath 
of the K-Pg impact was consistent with this mixture. We consider 
the K–Pg micrite-rich layer analogous to modern “whitings” (e.g., 
Schultze-Lam et al., 1997), where blooms of cyanobacteria modify 
surface ocean chemistry and ecology and induce micrite precip-
itation under supersaturated conditions (e.g., Robbins and Black-
welder, 1992; Thompson, 2000; Obst et al., 2009). Modern whiting 
events are short-lived and have a local or regional extent, in al-
kaline lakes and tropical shallow water carbonate settings (Coshell 
et al., 1998). By comparison, the K–Pg micrite-rich layer has a re-
gional to global distribution and a much longer duration, albeit 
possibly produced by multiple episodic or seasonal events. This 
timing, and the duration and extent of deposition raise significant 
dilemma.

Cyanobacterial blooms in whitings require CaCO3 supersatura-
tion, a condition that is difficult to explain in the nutrient rich 
(Jones et al., 2019), immediate post-impact interval. However, dec-
imation of the calcareous nannoplankton, the dominant hapto-
phytes in the Cretaceous, and their replacement by dinoflagellates 
and diatoms (e.g., Knoll and Follows, 2016) would have altered the 
flux of CaCO3 relative to organic carbon (Corg) out of the surface 
ocean and caused an increase in saturation over millennia driven 
by the ongoing input of alkalinity from rivers (Henehan et al., 
2016; Boudreau et al., 2018). Sufficiently high levels of supersatu-
ration to initiate whitings (saturation states with respect to calcite 
> 10) could have been attained only if the eukaryotic-CaCO3/Corg
rain rate would have dropped to 50% or 75% (Henehan et al., 2016), 
which, given the near eradication of calcareous nannoplankton and 
planktic foraminifera, and the small cell size of survivors (Alvarez 
et al., 2019), is not unreasonable, even with seasonal or episodic 
whitings. At that point, whitings would replace the eukaryotic-
CaCO3 flux, increasing the rain ratio, but saturation would remain 
elevated by riverine influx.

The effect of rain rate on saturation would be offset by lower 
export production over much of the oceans in the post K-Pg 
boundary interval, especially in a “microbial-loop” world where the 
majority of respiration took place in the surface ocean (Lowery et 
al., 2020), and CO2 export was diminished. However, the lack of 
extinction of benthic foraminifera suggests that moderate export 
productivity was maintained in many but not all locations (e.g., 
Alegret et al., 2012; Henehan et al., 2019). The lower eukaryotic-
CaCO3/Corg rain rate may explain the coincidence between the de-
crease in micrite content and the recovery of nannoplankton at the 
top of the micrite-rich layer.

The micrite-rich layer contains charcoal at Sites M0077 (in the 
crater) (Gulick et al., 2019), 738 (Kerguelen Plateau, Indian Ocean), 
1210 (Shatsky Rise, Pacific Ocean) and 1262 (Walvis Ridge, South 
Atlantic Ocean) (Supplemental Materials Figure 3) and lies immedi-
ately above the Ir anomaly at several sites (Supplemental Materials 
Section 3). This suggests that micrite deposition began within years 
of the impact which raises a significant timing problem.

Supersaturation resulting from low eukaryotic CaCO3/Corg flux 
cannot happen within years. Simulations suggest that supersat-
uration (>10) requires 8.0 kyr for 50% reduction in eukaryotic 
CaCO3/Corg flux and 2.8 kyr for 75% reduction (Henehan et al., 
2016). Well-preserved specimens of all crystal forms are rare so 
that their spatial and temporal distributions are unclear, but iden-
tifiable cyanobacterial calcite is found throughout the micrite-rich 
layer at distal sites (Fig. 1), with the lowermost specimens 3 cm 
above the boundary at Site 1262 (approximately 5.5 kyr after the 
K-Pg boundary impact assuming constant sedimentation rates). At 
Site M0077 in the crater, proposed cyanobacterial specimens in 
the green marlstone unit are also up to a few millennia above the 
boundary (Bralower et al., in review). The ages of these basal spec-
imens are consistent with the timing of supersaturation assuming 
low eukaryotic CaCO3/Corg flux (Henehan et al., 2016). Micrite in 
the immediate impact aftermath, i.e., in the first millennium af-
ter the impact, would either require circumstances in addition to 
the very low CaCO3/Corg flux or result from CaO reacting with CO2
in the water column, as previously invoked to explain micrite in 
the proximal sites. At distal sites, CaO dispersed by the dust cloud 
(Artemieva and Morgan, 2020) would create, on average, a 4 cm-
thick carbonate layer after carbonation, plus the consumption of 
CO2 would increase saturation states leading to additional micrite 
precipitation. Simulations suggest that the fallout layer may have 
been substantially thicker at proximal sites (Artemieva and Mor-
gan, 2020), creating even higher levels of supersaturation in these 
locations, and generating additional (likely abiotic) whiting mate-
rial. In summary, a combination of carbonation of CaO, continued 
moderate export, and low CaCO3/Corg flux could sustain “whitings” 
on a global basis while promoting abiotic calcite precipitation until 
the calcareous nannoplankton CaCO3 flux increased. Since this flux 
took several million years to recover to presumed Cretaceous lev-
els (Alvarez et al., 2019), and dinoflagellate productivity remained 
high, as indicated by the abundance of cysts in shelf and deep-sea 
sites (Vellekoop et al., 2018; Jones et al., 2019), we conclude that 
conditions remained suitable for whitings well into the early Pale-
ocene.

4.4. Ecological and evolutionary significance of the global microbial 
blooms

We now focus on the implications of the microbial blooms, and 
postulate that the thriving communities had a profound impact 
on organisms at higher trophic levels. The occurrence of shelled 
scalenohedra suggests that cyanobacteria lived inside or covering 
the tests of very small foraminifera, possibly dwarfed adults or ju-
veniles. Although most foraminifera in the carbonate layer show 
a normal wall texture (Supplemental Materials Section 1), the 
abundance of shelled scalenohedral fragments suggests that these 
unique foraminifera were relatively common. We speculate that 
these foraminifera grew during whiting events with cyanobacte-
ria encrusting their naked chambers inducing calcite precipitation. 
The occurrence of single scalenohedral chambers within normal 
foraminiferal shells (Supplemental Materials Figure 5; Pl. 5, 6) indi-
cates that whitings could be very short-lived events, though most 
likely had longer durations. Thus we postulate that whiting-like 
blooms of microbes invaded the open ocean, along with neritic 
planktic foraminiferal survivors (D’Hondt and Keller, 1991), or ner-
itic benthics evolving into planktic forms (Brinkhuis et al., 1988; 
Darling et al., 2009; Arenillas and Arz, 2017) in the millennia after 
the impact.

Globally distributed photosynthetic microbial communities were 
probably uniquely adapted to the extreme post-impact environ-
ments, that over the short-term were possibly dark, cold (e.g., 
Vellekoop et al., 2014; Brugger et al., 2017), CO2- (MacLeod et al., 
2018) and metal- (Erickson and Dickson, 1987) rich and/or highly 
eutrophic (e.g., Jiang et al., 2010). Cyanobacteria today grow in 
cold, Arctic waters (Cota et al., 1987), under eutrophic, metal-rich 
conditions (Reed and Gadd, 1989), high-CO2 concentrations (Visser 
et al., 2016), and under very low light levels (Knoll, 2008), and they 
inhabited some of the harshest environments throughout Earth 
history (Knoll, 2008). Some cyanobacteria and green algae are able 
to tolerate long intervals with low light levels (Antia and Cheng, 
1970), and, along with dinoflagellates, diatoms and non-calcifying 
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haptopytes (Medlin et al., 2008) may well have bloomed under 
conditions leading to the demise of the calcifying haptophyte algae. 
We postulate that microbes flourished in the immediate impact 
aftermath, but only formed calcite skeletons when saturation be-
came sufficiently elevated several millennia later.

Because algal and cyanobacterial blooms have the potential to 
tolerate high CO2 and nutrient conditions, we postulate that the 
elevated microbial activity ameliorated immediate post-impact en-
vironments, making ocean surface waters habitable for other life 
forms. First, algal and cyanobacterial blooms could have locally 
or regionally removed excess nutrients that accumulated due to 
the absence of other primary producers (Henehan et al., 2019), 
or brought in because widespread fires caused denudation of the 
land, although microbial production would be more susceptible 
to remineralization in the surface ocean in a so-called “micro-
bial loop” (Azam et al., 1983; Fenchel, 2008; Lowery et al., 2020). 
Second, microbial calcification led to minor net CO2 release (Ka-
mennaya et al., 2012), but was counteracted by growth of non-
calcareous forms, causing a more significant net CO2 draw down. 
There is abundant fossil and biomarker evidence for a thriving 
and diverse non-calcareous algal community in the impact af-
termath (e.g., Brinkhuis and Zachariasse, 1988; Sepúlveda et al., 
2009; Sepulveda et al., 2019; Schaefer et al., 2020). In addition, 
low sterane to hopane ratios suggest a flourishing non-calcareous 
bacterial community, likely in addition to calcareous cyanobacteria 
(Sepúlveda et al., 2009; Schaefer et al., 2020) although it is im-
possible to differentiate between primary production and organic 
matter degradation (possible in the “microbial loop”) for their ori-
gin. Thus, microbial blooms could have led to a net removal of CO2
released during the impact.

The blooms enhanced the habitability of the immediate post-
impact ocean, as evidenced by the sequential recovery of planktic 
foraminifera and nannoplankton. Foraminiferal survivors, including 
benthic species (e.g., Arenillas and Arz, 2017) first appeared in the 
lower to middle part of the carbonate layer at Site 1262 (Birch et 
al., 2012), and in the transitional unit at Site M0077 (Lowery et 
al., 2018). The first nannoplankton groups emerged in the middle 
of the layer, including Braarudosphaera, a taxon known to tolerate 
eutrophic coastal waters (Supplemental Materials Figure 12), and 
Cervisiella (commonly named Thoracosphaera), a calcisphere that 
was cyst-forming (e.g., Hildebrand-Habel et al., 1999), an adap-
tive strategy for hostile surface water conditions (Anderson et al., 
2008). The end of the formation of the micrite-rich layer and in-
ferred microbial blooms is defined by the emergence of Danian 
coccolithophores including, at some sites, the “boom-bust” species 
(Bown, 2005; Jones et al., 2019). This recovery sequence suggests 
that cyanobacteria and non-haptophyte algae, by removing excess 
nutrients, and possibly CO2 and metals, helped to condition the 
oceans for the recovery of calcareous phytoplankton, and were in-
strumental in the survival of benthic species and the recovery of 
the marine food web with evolution of calcifying plankton.

The extinction of over 90% of calcareous nannoplankton, dom-
inant primary producers in the Cretaceous open ocean, may have 
slowed the biological pump and thus delivery of food and nutri-
ents to the deep ocean (e.g., Kump, 1991), but probably in patterns 
variable by region (Alegret et al., 2012; Henehan et al., 2019). Deep 
sea communities including benthic foraminifera and smaller fish 
(Friedman, 2009; Sibert et al., 2014) were far less impacted by per-
turbations related to the K–Pg boundary event than surface water 
communities, in some cases indicating regionally higher food sup-
ply (e.g., Alegret et al., 2012), a discovery supported by elevated 
Ba/Ti ratios that indicate high export productivity (Hull and Norris, 
2011). Replacement of calcareous nannoplankton by dinoflagellates 
and diatoms can explain the regionally higher export productiv-
ity and food supply (Hull et al., 2011), but both groups have poor 
deep-sea fossil records. Microbial carbon export, though limited by 
surface ocean remineralization of sinking organic remains (Lowery 
et al., 2020), can explain deep-sea survival including in harsh im-
mediate post-impact conditions, although there is another possible 
means of carbon export.

Our evidence suggests that microbial production may also have 
provided food for surface ocean biota. Planktic foraminiferal com-
munities recovered more rapidly than calcareous nannoplankton, 
with earliest open-ocean assemblages dominated by Cretaceous 
neritic taxa (Hull et al., 2011; Lowery et al., 2018). Blooms of mi-
crobes would have served as a potential food source in the surface 
ocean, enabling the survival of opportunist planktic foraminifera, 
or their replacement by benthic forms evolving into plankton, and 
their full recovery before the nannoplankton (Hull et al., 2011) as 
well as of other grazers such as copepods (Bralower et al., in re-
view). It is possible that these grazers and their fecal material were 
responsible for the majority of carbon export.

The K-Pg global microbial bloom documented here is the most 
extensive observed in the geological record. However, we specu-
late that microbial blooms following the decimation of eukaryote 
producers could have been key to survival and ecosystem recov-
ery after other mass extinctions (e.g., Grice et al., 2005; Xie et al., 
2005). Our novel identification of microbial fossils has potential for 
recognizing microbial production at other times, complementing 
biomarker analyses, thus the next step is to expand this investiga-
tion to earlier mass extinctions.

5. Conclusions

Abundant micrite is found in the K-Pg boundary interval at 
sites extending from shelf to abyssal depths characterized by de-
positional processes ranging from tsunami emplacement to pelagic 
rain. The micrite-rich layer is between a few centimeters and over 
seventeen meters thick. Well-preserved crystals show an array of 
morphologies that are indicative of a range of different origins. 
Simple interlocking rhombohedra resemble crystals grown from 
solution and are interpreted as inorganic precipitates. Close to the 
crater, crystals likely formed from backreaction of CaO vaporized 
during the impact. Crystals at numerous sites contain geologically 
unique, micron-sized microcrystals made of oriented agglomerates 
of sub-micrometer mesocrystals arranged in several regular ge-
ometries. Microcrystals show a striking resemblance to cyanobac-
terial calcite produced in natural environments and in culture, and 
the micrite-rich layer contains abundant hopanes and steranes sug-
gesting elevated microbial production and/or degradation. Thus the 
layer is interpreted to represent a post-impact microbial bloom, in-
volving bio-induced and/or bio-influenced calcite precipitation, a 
global whiting-like event that began within millennia of the im-
pact and lasted up to thousands of years at some locations. The 
blooms thrived in supersaturated surface waters that developed in 
response to the abrupt extinction of the calcareous calcifiers and 
a decrease in the CaCO3/Corg rain ratio. We hypothesize that the 
microbial blooms helped post impact ecosystem recovery by re-
moving nutrients and providing a food source for higher trophic 
orders.
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